eap
is a function for computing expected a posteriori estimates of theta.
eap(
object,
select = NULL,
resp,
theta_grid = seq(-4, 4, 0.1),
prior = rep(1/81, 81)
)
# S4 method for class 'item_pool'
eap(
object,
select = NULL,
resp,
theta_grid = seq(-4, 4, 0.1),
prior = rep(1/81, 81)
)
EAP(object, select = NULL, prior, reset_prior = FALSE)
# S4 method for class 'test'
EAP(object, select = NULL, prior, reset_prior = FALSE)
# S4 method for class 'test_cluster'
EAP(object, select = NULL, prior, reset_prior = FALSE)
an item_pool
object.
(optional) if item indices are supplied, only the specified items are used.
item response on all (or selected) items in the object
argument. Can be a vector, a matrix, or a data frame. length(resp)
or ncol(resp)
must be equal to the number of all (or selected) items.
the theta grid to use as quadrature points. (default = seq(-4, 4, .1)
)
a prior distribution, a numeric vector for a common prior or a matrix for individualized priors. (default = rep(1 / 81, 81)
)
used for test_cluster
objects. If TRUE
, reset the prior distribution for each test
object.
eap
returns a list containing estimated values.
th
theta value.
se
standard error.
eap(itempool_fatigue, resp = resp_fatigue_data[10, ])
#> $th
#> [1] -0.1115028
#>
#> $se
#> [1] 0.06188415
#>
eap(itempool_fatigue, select = 1:20, resp = resp_fatigue_data[10, 1:20])
#> $th
#> [1] -0.1583389
#>
#> $se
#> [1] 0.1290421
#>