mle
is a function for computing maximum likelihood estimates of theta.
mle(
object,
select = NULL,
resp,
start_theta = NULL,
max_iter = 100,
crit = 0.001,
truncate = FALSE,
theta_range = c(-4, 4),
max_change = 1,
use_step_size = FALSE,
step_size = 0.5,
do_Fisher = TRUE
)
# S4 method for class 'item_pool'
mle(
object,
select = NULL,
resp,
start_theta = NULL,
max_iter = 50,
crit = 0.005,
truncate = FALSE,
theta_range = c(-4, 4),
max_change = 1,
use_step_size = FALSE,
step_size = 0.5,
do_Fisher = TRUE
)
MLE(
object,
select = NULL,
start_theta = NULL,
max_iter = 100,
crit = 0.001,
theta_range = c(-4, 4),
truncate = FALSE,
max_change = 1,
do_Fisher = TRUE
)
# S4 method for class 'test'
MLE(
object,
select = NULL,
start_theta = NULL,
max_iter = 100,
crit = 0.001,
theta_range = c(-4, 4),
truncate = FALSE,
max_change = 1,
do_Fisher = TRUE
)
# S4 method for class 'test_cluster'
MLE(object, select = NULL, start_theta = NULL, max_iter = 100, crit = 0.001)
an item_pool
object.
(optional) if item indices are supplied, only the specified items are used.
item response on all (or selected) items in the object
argument. Can be a vector, a matrix, or a data frame. length(resp)
or ncol(resp)
must be equal to the number of all (or selected) items.
(optional) initial theta values. If not supplied, EAP estimates using uniform priors are used as initial values. Uniform priors are computed using the theta_range
argument below, with increments of .1
.
maximum number of iterations. (default = 100
)
convergence criterion to use. (default = 0.001
)
set TRUE
to impose a bound using theta_range
on the estimate. (default = FALSE
)
a range of theta values to bound the estimate. Only effective when truncate
is TRUE
. (default = c(-4, 4)
)
upper bound to impose on the absolute change in theta between iterations. Absolute changes exceeding this value will be capped to max_change
. (default = 1.0
)
set TRUE
to use step_size
. (default = FALSE
)
upper bound to impose on the absolute change in initial theta and estimated theta. Absolute changes exceeding this value will be capped to step_size
. (default = 0.5
)
set TRUE
to use Fisher scoring instead of Newton-Raphson method. (default = TRUE
)
mle
returns a list containing estimated values.
th
theta value.
se
standard error.
conv
TRUE
if estimation converged.
trunc
TRUE
if truncation was applied on th
.
mle(itempool_fatigue, resp = resp_fatigue_data[10, ])
#> $th
#> [1] -0.1112582
#>
#> $se
#> [1] 0.06490829
#>
#> $conv
#> [1] TRUE
#>
#> $trunc
#> [1] FALSE
#>
mle(itempool_fatigue, select = 1:20, resp = resp_fatigue_data[10, 1:20])
#> $th
#> [1] -0.1573182
#>
#> $se
#> [1] 0.1329886
#>
#> $conv
#> [1] TRUE
#>
#> $trunc
#> [1] FALSE
#>