R/RcppExports.R
, R/cpp_theta_documents.r
theta_EAP.Rd
theta_EAP()
and theta_EAP_matrix()
are functions for calculating a theta estimate using EAP (expected a posteriori) method.
theta_EAP(theta_grid, item_parm, resp, ncat, model, prior, prior_parm)
theta_EAP_matrix(theta_grid, item_parm, resp, ncat, model, prior, prior_parm)
theta quadrature points.
a matrix containing item parameters.
responses on each item. Must be a vector for theta_EAP()
, and a matrix for theta_EAP_matrix()
. Each row should represent an examinee.
a vector containing the number of response categories of each item.
a vector indicating item models of each item, using
1
: 1PL model
2
: 2PL model
3
: 3PL model
4
: PC model
5
: GPC model
6
: GR model
an integer indicating the type of prior distribution, using
1
: normal distribution
2
: uniform distribution
a vector containing parameters for the prior distribution.
theta_EAP()
and theta_EAP_matrix()
are designed for multiple items.
theta_EAP()
is designed for one examinee, and theta_EAP_matrix()
is designed for multiple examinees.
Currently supports unidimensional models.
# item parameters
item_parm <- matrix(c(
1, NA, NA,
1, 2, NA,
1, 2, 0.25,
0, 1, NA,
2, 0, 1,
2, 0, 2),
nrow = 6,
byrow = TRUE
)
ncat <- c(2, 2, 2, 3, 3, 3)
model <- c(1, 2, 3, 4, 5, 6)
# simulate response
item_parm <- as.data.frame(item_parm)
item_parm <- cbind(101:106, 1:6, item_parm)
pool <- loadItemPool(item_parm)
true_theta <- seq(-3, 3, 1)
resp <- simResp(pool, true_theta)
theta_grid <- matrix(seq(-3, 3, .1), , 1)
theta_EAP(theta_grid, pool@ipar, resp[1, ], ncat, model, 1, c(1, 2))
#> $theta
#> [1] -1.536257
#>
#> $se
#> [1] 0.7754473
#>
theta_EAP_matrix(theta_grid, pool@ipar, resp, ncat, model, 1, c(1, 2))
#> [[1]]
#> [[1]]$theta
#> [1] -1.536257
#>
#> [[1]]$se
#> [1] 0.7754473
#>
#>
#> [[2]]
#> [[2]]$theta
#> [1] -0.4914265
#>
#> [[2]]$se
#> [1] 0.6365066
#>
#>
#> [[3]]
#> [[3]]$theta
#> [1] -0.1161107
#>
#> [[3]]$se
#> [1] 0.57629
#>
#>
#> [[4]]
#> [[4]]$theta
#> [1] -0.4914265
#>
#> [[4]]$se
#> [1] 0.6365066
#>
#>
#> [[5]]
#> [[5]]$theta
#> [1] 1.856916
#>
#> [[5]]$se
#> [1] 0.556842
#>
#>
#> [[6]]
#> [[6]]$theta
#> [1] 2.345399
#>
#> [[6]]$se
#> [1] 0.4701189
#>
#>
#> [[7]]
#> [[7]]$theta
#> [1] 2.532291
#>
#> [[7]]$se
#> [1] 0.3933497
#>
#>