runCalibration
is a function for performing item parameter calibration on the response data.
runCalibration(
data,
dimensions = 1,
fix_method = "free",
fixedpar = NULL,
ignore_nonconv = FALSE,
verbose = FALSE,
...
)
a PROsetta_data
object. See loadData
for loading a dataset.
the number of dimensions to use. Must be 1 or 2.
If 1, use one underlying dimension for all instruments combined.
If 2, use each dimension separately for the anchor instrument and the developing instrument. Covariance between dimensions is freely estimated. (default = 1
)
the type of constraints to impose. (default = free
)
item
for fixed parameter calibration using anchor item parameters
theta
for using the mean and the variance obtained from a unidimensional calibration of anchor items
free
for free calibration
this argument exists for backward compatibility. TRUE
is equivalent to fix_method = "item"
, and FALSE
is equivalent to fix_method = "free"
.
if TRUE
, return results even when calibration does not converge. If FALSE
, raise an error when calibration does not converge. (default = FALSE
)
if TRUE
, print status messages. (default = FALSE
)
runCalibration
returns a SingleGroupClass
object containing item calibration results.
This object can be used in coef
, itemfit
, itemplot
in 'mirt' package to extract wanted information.
if (FALSE) {
out_calib <- runCalibration(data_asq) # errors
}
# \donttest{
out_calib <- runCalibration(data_asq, technical = list(NCYCLES = 1000))
mirt::coef(out_calib, IRTpars = TRUE, simplify = TRUE)
mirt::itemfit(out_calib, empirical.plot = 1)
mirt::itemplot(out_calib, item = 1, type = "info")
mirt::itemfit(out_calib, "S_X2", na.rm = TRUE)
# }