Introduction

This vignette explains how to perform scale linking with the PROsetta package. For the purpose of illustration, we replicate the linking between two scales as was studied by Choi, Schalet, Cook, and Cella (2014):

  • Scale to be linked: The Center for Epidemiologic Studies Depression scale (CES-D); 20 items, 1-4 points each, raw score range = 20-80.
  • Anchoring scale: The PROMIS Depression scale; 28 items, 1-5 points each, raw score range = 28-140.

Load datasets

The first step is to load the input dataset using loadData(). Scale linking requires three input parts: (1) response data, (2) item map, and (3) anchor data. In this vignette, we use example datasets response_dep, itemmap_dep, anchor_dep. These are included in the PROsetta package.

d <- loadData(
  response  = response_dep,
  itemmap   = itemmap_dep,
  anchor    = anchor_dep
)
## item_id guessed as   : item_id
## person_id guessed as : prosettaid
## scale_id guessed as  : scale_id
## model_id guessed as  : item_model

The loadData() function requires three arguments. These are described in detail below.

Response data

The response data contains individual item responses on both scales. The data must include the following columns.

  • Person ID column. The response data must have a column for unique IDs of participants.
    • The example data response_dep uses prosettaid as the column name, but it can be named differently as long as the same column name does not appear in other data parts. For example, see how item map itemmap_dep and anchor data anchor_dep do not have a column named prosettaid.
  • Item response columns. The response data must include item response columns
    • The item response columns must be named using their item IDs.
    • The item IDs must match item IDs appearing in item map and anchor data. For example, see how the item IDs appearing in response_dep exactly matches item IDs appearing in itemmap_dep. Also, see how the item IDs appearing in anchor_dep are a subset of item IDs appearing in response_dep.

Below is an example of response data.

head(response_dep)
##   prosettaid EDDEP04 EDDEP05 EDDEP06 EDDEP07 EDDEP09 EDDEP14 EDDEP17 EDDEP19
## 1     100048       1       1       1       1       1       1       1       1
## 2     100049       1       1       1       1       1       1       1       1
## 3     100050       1       1       1       1       1       1       2       1
## 4     100051       1       2       1       1       1       2       2       2
## 5     100052       1       1       1       1       1       1       1       1
## 6     100053       1       1       1       1       1       1       1       1
##   EDDEP21 EDDEP22 EDDEP23 EDDEP26 EDDEP27 EDDEP28 EDDEP29 EDDEP30 EDDEP31
## 1       2       1       1       1       1       1       1       2       2
## 2       1       1       1       2       1       1       1       1       1
## 3       2       1       1       2       2       2       2       2       2
## 4       2       1       2       2       1       1       2       1       2
## 5       1       1       1       1       1       1       1       1       1
## 6       1       1       2       2       1       1       1       1       1
##   EDDEP35 EDDEP36 EDDEP39 EDDEP41 EDDEP42 EDDEP44 EDDEP45 EDDEP46 EDDEP48
## 1       1       2       1       1       2       2       1       2       1
## 2       1       1       1       1       1       1       1       1       1
## 3       1       2       1       2       2       2       1       2       2
## 4       2       2       1       1       1       1       1       2       1
## 5       1       1       1       1       1       1       1       1       1
## 6       1       2       1       1       3       2       1       1       1
##   EDDEP50 EDDEP54 CESD1 CESD2 CESD3 CESD4 CESD5 CESD6 CESD7 CESD8 CESD9 CESD10
## 1       1       1     1     1     1     1     1     1     1     1     1      1
## 2       1       1     1     1     1     1     1     1     1     1     1      1
## 3       2       2     1     1     1     1     2     1     1     1     1      1
## 4       1       2     1     1     1     1     1     2     2     1     1      1
## 5       1       1     1     1     1     1     1     1     1     1     1      1
## 6       1       1     1     1     1     1     1     1     1     1     1      1
##   CESD11 CESD12 CESD13 CESD14 CESD15 CESD16 CESD17 CESD18 CESD19 CESD20
## 1      2      1      1      1      1      1      1      1      1      1
## 2      2      1      1      1      1      1      1      1      1      1
## 3      2      1      2      1      1      1      1      1      1      2
## 4      1      1      4      1      1      1      1      1      1      2
## 5      1      1      1      1      1      1      1      1      1      1
## 6      2      1      1      1      1      1      1      1      1      1

Item map data

The item map data contains information on which items belong to which scale. The following columns are required.

  • Scale ID column. The item map data must have a scale ID column indicating which scale each item belongs to.
    • The example data itemmap_dep uses scale_id as the column name, but it can be named differently as long as the same column name does not appear in other data parts.
    • Also, the example data itemmap_dep codes the anchor scale as Scale 1 and the scale to be linked as Scale 2, but these can be flipped if the user wants to do so.
  • Item ID column. The item map data must have an item ID column.
    • The item IDs must match item IDs appearing in other data parts. For example, see how the item IDs appearing in itemmap_dep exactly matches item IDs appearing in response_dep. Also, see how the item IDs appearing in anchor_dep are a subset of item IDs appearing in itemmap_dep.
    • The example data itemmap_dep uses item_id as the column name, but it can be named differently as long as item ID columns use the same name across data parts. For example, see how itemmap_dep and anchor_dep both use item_id.
  • Item model column. The item map data must have an item model column.
    • Accepted values are GR for graded response model, and GPC for generalized partial credit model.
    • The example data itemmap_dep uses item_model as the column name, but it can be named differently as long as item model columns use the same name across data parts. For example, see how itemmap_dep and anchor_dep both use item_model.
  • ncat: The item map data must have a column named ncat containing the number of response categories of each item.

Below is an example of item map data.

head(itemmap_dep)
##   scale_id item_id item_model ncat
## 1        1 EDDEP04         GR    5
## 2        1 EDDEP05         GR    5
## 3        1 EDDEP06         GR    5
## 4        1 EDDEP07         GR    5
## 5        1 EDDEP09         GR    5
## 6        1 EDDEP14         GR    5

Anchor data

The anchor data contains item parameters for the anchoring scale. The following columns are required:

  • Item ID column. The anchor data must have an item ID column.
    • The item IDs must match item IDs appearing in other data parts. For example, see how the item IDs appearing in anchor_dep are a subset of item IDs appearing in itemmap_dep.
    • The example data anchor_dep uses item_id as the column name, but it can be named differently as long as item ID columns use the same name across data parts. For example, see how itemmap_dep and anchor_dep both use item_id.
  • Item model column. The anchor data must have an item model column.
    • Accepted values are GR for graded response model, and GPC for generalized partial credit model.
    • The example data anchor_dep uses item_model as the column name, but it can be named differently as long as item model columns use the same name across data parts. For example, see how itemmap_dep and anchor_dep both use item_model.
  • Item parameter columns. The anchor data must have item parameter columns named a, cb1, cb2, and so on. These must be in the A/B parameterization (i.e., traditional IRT parameterization for unidimensional models) so that item probabilities are calculated based on \(a(\theta - b)\).

Below is an example of anchor data.

head(anchor_dep)
##   item_id item_model        a       cb1       cb2      cb3      cb4
## 1 EDDEP04         GR 4.261422 0.4010694 0.9756732 1.696300 2.444072
## 2 EDDEP05         GR 3.931743 0.3049418 0.9130961 1.593476 2.411682
## 3 EDDEP06         GR 4.144759 0.3501130 0.9153482 1.678203 2.470526
## 4 EDDEP07         GR 2.801804 0.1477485 0.7723478 1.602715 2.538057
## 5 EDDEP09         GR 3.657433 0.3119582 0.9818088 1.782108 2.571127
## 6 EDDEP14         GR 2.333381 0.1859934 0.9473173 1.728770 2.632643

Preliminary analysis

Preliminary analyses are commonly conducted before the main scale linking to check for various statistical aspects of the data. The PROsetta package offers a set of helper functions for preliminary analyses.

Basic descriptive statistics

The frequency distribution of each item in the response data is obtained by runFrequency().

freq_table <- runFrequency(d)
head(freq_table)
##           1   2   3  4  5
## EDDEP04 526 112  66 29 14
## EDDEP05 488 118  91 37 12
## EDDEP06 502 119  85 30 10
## EDDEP07 420 155 107 49 16
## EDDEP09 492 132  89 25  9
## EDDEP14 445 150 101 37 14

The frequency distribution of the summed scores for the combined scale can be plotted as a histogram with plot(). The required argument is a PROsetta_data object created with loadData(). The optional scale argument specifies for which scale the summed score should be created. Setting scale = "combined" plots the summed score distribution for the combined scale.

plot(d, scale = "combined", title = "Combined scale")

The user can also generate the summed score distribution for the first or second scale by specifying scale = 1 or scale = 2.

plot(d, scale = 1, title = "Scale 1") # not run
plot(d, scale = 2, title = "Scale 2") # not run

Basic descriptive statistics are obtained for each item by runDescriptive().

desc_table <- runDescriptive(d)
head(desc_table)
##           n mean   sd median trimmed mad min max range skew kurtosis   se
## EDDEP04 747 1.52 0.94      1    1.30   0   1   5     4 1.91     3.01 0.03
## EDDEP05 746 1.62 0.99      1    1.42   0   1   5     4 1.54     1.50 0.04
## EDDEP06 746 1.56 0.94      1    1.37   0   1   5     4 1.66     2.01 0.03
## EDDEP07 747 1.78 1.05      1    1.59   0   1   5     4 1.23     0.59 0.04
## EDDEP09 747 1.56 0.91      1    1.38   0   1   5     4 1.62     1.98 0.03
## EDDEP14 747 1.69 1.00      1    1.51   0   1   5     4 1.38     1.12 0.04

Classical reliability analysis

Classical reliability statistics can be obtained by runClassical(). By default, the analysis is performed for the combined scale.

classical_table <- runClassical(d)
summary(classical_table$alpha$combined)
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N   ase mean   sd median_r
##       0.98      0.98    0.99      0.53  54 9e-04  1.7 0.69     0.54

From the above summary, we see that the combined scale (48 items) has a good reliability (alpha = 0.98).

The user can set scalewise = TRUE to request an analysis for each scale separately in addition to the combined scale.

classical_table <- runClassical(d, scalewise = TRUE)
summary(classical_table$alpha$`2`)
## 
## Reliability analysis   
##  raw_alpha std.alpha G6(smc) average_r S/N    ase mean   sd median_r
##       0.93      0.94    0.95      0.42  15 0.0035  1.5 0.56     0.42

From the above summary, we see that the scale to be linked (Scale 2; CES-D) has a good reliability (alpha = 0.93).

Specifying omega = TRUE returns the McDonald’s \(\omega\) coefficients as well.

classical_table <- runClassical(d, scalewise = TRUE, omega = TRUE)
classical_table$omega$combined # omega values for combined scale
classical_table$omega$`1`      # omega values for each scale, created when scalewise = TRUE
classical_table$omega$`2`      # omega values for each scale, created when scalewise = TRUE

Additional arguments can be supplied to runClassical() to pass onto psych::omega().

classical_table <- runClassical(d, scalewise = TRUE, omega = TRUE, nfactors = 5) # not run

Dimensionality analysis

A key assumption in item response theory is the unidimensionality assumption. Dimensionality analysis is performed with confirmatory factor analysis by runCFA(), which fits a one-factor model to the data. Setting scalewise = TRUE performs the dimensionality analysis for each scale separately in addition to the combined scale.

out_cfa <- runCFA(d, scalewise = TRUE)

runCFA() calls for lavaan::cfa() internally and can pass additional arguments onto it.

out_cfa <- runCFA(d, scalewise = TRUE, std.lv = TRUE) # not run

The CFA result for the combined scale is stored in the combined slot, and if scalewise = TRUE, the analysis for each scale is also stored in each numbered slot.

out_cfa$combined
## lavaan 0.6.17 ended normally after 23 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       220
## 
##                                                   Used       Total
##   Number of observations                           731         747
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              4227.611    4700.780
##   Degrees of freedom                              1080        1080
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.046
##   Shift parameter                                          657.455
##     simple second-order correction
out_cfa$`1`
## lavaan 0.6.17 ended normally after 16 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       140
## 
##                                                   Used       Total
##   Number of observations                           738         747
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                               863.527    1434.277
##   Degrees of freedom                               350         350
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  0.678
##   Shift parameter                                          160.257
##     simple second-order correction
out_cfa$`2`
## lavaan 0.6.17 ended normally after 20 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                        80
## 
##                                                   Used       Total
##   Number of observations                           740         747
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              1106.148    1431.797
##   Degrees of freedom                               170         170
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  0.812
##   Shift parameter                                           69.205
##     simple second-order correction

CFA fit indices can be obtained by using summary() from the lavaan package. For the combined scale:

lavaan::summary(out_cfa$combined, fit.measures = TRUE, standardized = TRUE, estimates = FALSE)
## lavaan 0.6.17 ended normally after 23 iterations
## 
##   Estimator                                       DWLS
##   Optimization method                           NLMINB
##   Number of model parameters                       220
## 
##                                                   Used       Total
##   Number of observations                           731         747
## 
## Model Test User Model:
##                                               Standard      Scaled
##   Test Statistic                              4227.611    4700.780
##   Degrees of freedom                              1080        1080
##   P-value (Chi-square)                           0.000       0.000
##   Scaling correction factor                                  1.046
##   Shift parameter                                          657.455
##     simple second-order correction                                
## 
## Model Test Baseline Model:
## 
##   Test statistic                            793198.133   91564.632
##   Degrees of freedom                              1128        1128
##   P-value                                        0.000       0.000
##   Scaling correction factor                                  8.758
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996       0.960
##   Tucker-Lewis Index (TLI)                       0.996       0.958
##                                                                   
##   Robust Comparative Fit Index (CFI)                         0.783
##   Robust Tucker-Lewis Index (TLI)                            0.774
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.063       0.068
##   90 Percent confidence interval - lower         0.061       0.066
##   90 Percent confidence interval - upper         0.065       0.070
##   P-value H_0: RMSEA <= 0.050                    0.000       0.000
##   P-value H_0: RMSEA >= 0.080                    0.000       0.000
##                                                                   
##   Robust RMSEA                                               0.118
##   90 Percent confidence interval - lower                     0.115
##   90 Percent confidence interval - upper                     0.121
##   P-value H_0: Robust RMSEA <= 0.050                         0.000
##   P-value H_0: Robust RMSEA >= 0.080                         1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.051       0.051

and also for each scale separately:

lavaan::summary(out_cfa$`1`, fit.measures = TRUE, standardized = TRUE, estimates = FALSE) # not run
lavaan::summary(out_cfa$`2`, fit.measures = TRUE, standardized = TRUE, estimates = FALSE) # not run

Item parameter calibration

runCalibration() can be used to perform free IRT calibration for diagnostic purposes. runCalibration() calls mirt::mirt() internally, and additional arguments can be supplied to be passed onto mirt, e.g., to increase the number of EM cycles to 1000, as follows:

out_calib <- runCalibration(d, technical = list(NCYCLES = 1000))

As a safeguard, if the model fit process does not converge, runCalibration() explicitly raises an error and does not return its results.

out_calib <- runCalibration(d, technical = list(NCYCLES = 10))
## Error in runCalibration(d, technical = list(NCYCLES = 10)): calibration did not converge: increase iteration limit by adjusting the 'technical' argument, e.g., technical = list(NCYCLES = 510)

The output object from runCalibration() can be used to generate diagnostic output with functions from the mirt package:

mirt::itemfit(out_calib, empirical.plot = 1)
mirt::itemplot(out_calib, item = 1, type = "info")
mirt::itemfit(out_calib, "S_X2", na.rm = TRUE)

Scale information functions can be plotted with plotInfo. The two required arguments are an output object from runCalibration() and a PROsetta object from loadData(). The additional arguments specify the labels, colors, and line types for each scale and the combined scale. The last values in arguments scale_label, color, lty represent the values for the combined scale.

plotInfo(
  out_calib, d,
  scale_label = c("PROMIS Depression", "CES-D", "Combined"),
  color = c("blue", "red", "black"),
  lty = c(1, 2, 3)
)

Scale linking: IRT-based

Scale linking can be performed in multiple ways. This section describes the workflow for performing an IRT-based linking.

Obtain linked item parameters

The first step of IRT-based linking is to obtain linked item parameters. This is done by runLinking(), which performs scale linking based on supplied anchor item parameters. A variety of scale linking methods are available in the PROsetta package.

Fixed parameter calibration method

A fixed-parameter calibration is performed by constraining item parameters of anchor items to anchor data values, and freely estimating item parameters for non-anchor items. The mean and the variance of \(\theta\) is freely estimated to capture the difference between the current participant group relative to the anchor participant group, assuming the anchor group follows \(\theta \sim N(0, 1)\).

Scale linking through fixed parameter calibration is performed by setting method = "FIXEDPAR".

link_fixedpar <- runLinking(d, method = "FIXEDPAR")

From the output, the linked parameters are stored in the $ipar_linked slot.

head(link_fixedpar$ipar_linked)
##         item_id item_model        a        b1        b2       b3       b4
## EDDEP04 EDDEP04         GR 4.261422 0.4010694 0.9756732 1.696300 2.444072
## EDDEP05 EDDEP05         GR 3.931743 0.3049418 0.9130961 1.593476 2.411682
## EDDEP06 EDDEP06         GR 4.144759 0.3501130 0.9153482 1.678203 2.470526
## EDDEP07 EDDEP07         GR 2.801804 0.1477485 0.7723478 1.602715 2.538057
## EDDEP09 EDDEP09         GR 3.657433 0.3119582 0.9818088 1.782108 2.571127
## EDDEP14 EDDEP14         GR 2.333381 0.1859934 0.9473173 1.728770 2.632643

The group characteristics are stored in the $mu_sigma slot.

link_fixedpar$mu_sigma
## $mu
##          F1 
## -0.05974478 
## 
## $sigma
##           F1
## F1 0.9504143
## 
## $sd
##        F1 
## 0.9748919 
## 
## $corr
##    F1
## F1  1

From the above output, we see that the participant group in response_dep had a slightly lower \(\theta\) of -0.060 compared to the anchor group, and a slightly smaller variance of 0.950 compared to the anchor group.

Linear transformation methods

Linear transformation methods determine linear transformation constants, i.e., a slope and an intercept, to transform freely estimated item parameters to the metric defined by the anchor items. Linear transformation methods include Mean-Mean, Mean-Sigma, Haebara, and Stocking-Lord methods.

Scale linking through linear transformation is performed by setting the method argument to one of the following options:

  • MM (Mean-Mean)
  • MS (Mean-Sigma)
  • HB (Haebara)
  • SL (Stocking-Lord)
link_sl <- runLinking(d, method = "SL", technical = list(NCYCLES = 1000))
link_sl

The item parameter estimates linked to the anchor metric are stored in the $ipar_linked slot.

head(link_sl$ipar_linked)
##   item_id item_model        a         b1        b2       b3       b4
## 1 EDDEP04         GR 3.793161 0.46953055 1.0795350 1.723900 2.349080
## 2 EDDEP05         GR 3.320380 0.33290328 0.8987342 1.652724 2.495485
## 3 EDDEP06         GR 3.425968 0.38780295 1.0150063 1.791367 2.554685
## 4 EDDEP07         GR 2.515490 0.07923511 0.8041320 1.613013 2.489921
## 5 EDDEP09         GR 3.473136 0.33392535 1.0061928 1.872557 2.581161
## 6 EDDEP14         GR 2.593311 0.16625956 0.8908913 1.766003 2.578983

Transformation constants (A = slope; B = intercept) for the specified linear transformation method are stored in the $constants slot.

link_sl$constants
##         A         B 
##  0.982306 -0.064442

Calibrated projection (using fixed-parameter calibration)

Calibrated projection is an IRT-based multidimensional scale linking method. Calibrated projection is performed through a multidimensional model where the items in one scale measures its own \(\theta\) dimension, and items in another scale measures another \(\theta\) dimension.

In this vignette, the anchor scale (PROMIS Depression) was coded as Scale 1, and the scale to be linked (CES-D) was coded as Scale 2. This leads to Scale 1 items having non-zero \(a\)-parameters in dimension 1, and Scale 2 items having non-zero \(a\)-parameters in dimensions 2.

For the purpose of scale linking, calibrated projection can be performed in conjunction with the fixed-parameter calibration technique. The anchor item parameters are constrained to their anchor data values, and item parameters in the non-anchor items are freely estimated. The mean/variance of \(\theta\) in the anchor dimension are freely estimated to capture the difference between the current participant group relative to the anchor participant group, assuming the anchor group follows \(\theta \sim N(0, 1)\). The mean/variance of \(\theta\) in the scale-to-be-linked dimension are constrained to be 0/1.

In this vignette, this means that the mean/variance of dimension 1 (the anchor dimension) are freely estimated, and the mean/variance of dimension 2 are constrained to be 0/1.

Scale linking through calibrated projection (with fixed parameter calibration) is performed by setting method = "CP".

link_cp <- runLinking(d, method = "CP")

From the output, the linked parameters are stored in the $ipar_linked slot. See how there are two \(a\)-parameters, with items in the anchor scale (PROMIS Depression) loaded onto dimension 1.

head(link_cp$ipar_linked)
##         item_id item_model       a1 a2         d1        d2        d3
## EDDEP04 EDDEP04         GR 4.261422  0 -1.7091263 -4.157755 -7.228651
## EDDEP05 EDDEP05         GR 3.931743  0 -1.1989529 -3.590059 -6.265139
## EDDEP06 EDDEP06         GR 4.144759  0 -1.4511339 -3.793897 -6.955749
## EDDEP07 EDDEP07         GR 2.801804  0 -0.4139624 -2.163967 -4.490492
## EDDEP09 EDDEP09         GR 3.657433  0 -1.1409664 -3.590900 -6.517942
## EDDEP14 EDDEP14         GR 2.333381  0 -0.4339935 -2.210452 -4.033879
##                 d4
## EDDEP04 -10.415221
## EDDEP05  -9.482114
## EDDEP06 -10.239733
## EDDEP07  -7.111139
## EDDEP09  -9.403727
## EDDEP14  -6.142961

The group characteristics are stored in the $mu_sigma slot.

link_cp$mu_sigma
## $mu
##          F1          F2 
## -0.07015423  0.00000000 
## 
## $sigma
##           F1        F2
## F1 0.9714336 0.9060644
## F2 0.9060644 1.0000000
## 
## $sd
##        F1        F2 
## 0.9856133 1.0000000 
## 
## $corr
##           F1        F2
## F1 1.0000000 0.9192899
## F2 0.9192899 1.0000000

From the above output, we see that the participant group in response_dep had a slightly lower \(\theta\) of -0.070 compared to the anchor group, and a slightly smaller variance of 0.971 compared to the anchor group. Also, we see that the constructs represented by the two scales had a correlation of 0.919.

Making crosswalk tables

The second step of IRT-based scale linking is to generate raw-score-to-scale-score (RSSS) crosswalk tables. This is done by runRSSS(). The runRSSS() function requires the dataset object created by loadData(), and the output object from runLinking().

rsss_fixedpar <- runRSSS(d, link_fixedpar)

The output from runRSSS() includes three crosswalk tables (labeled as 1, 2, and combined), one for each scale and the third one for the combined scale. In this vignette, the anchor scale (PROMIS Depression) was coded as Scale 1 and the scale to be linked (CES-D) was coded as Scale 2.

The crosswalk table for the scale to be linked (CES-D; Scale 2) is shown here as an example.

head(round(rsss_fixedpar$`2`, 3))
##   raw_2 tscore tscore_se    eap eap_se escore_1 escore_2 escore_combined
## 1    20   34.5       6.0 -1.554  0.599   28.455   21.105          49.560
## 2    21   38.6       5.1 -1.139  0.509   29.340   21.851          51.192
## 3    22   41.1       4.7 -0.892  0.473   30.503   22.523          53.026
## 4    23   42.9       4.5 -0.713  0.455   31.836   23.154          54.991
## 5    24   44.7       4.1 -0.534  0.412   33.735   23.950          57.685
## 6    25   46.2       3.8 -0.382  0.382   35.853   24.777          60.630

The columns in the crosswalk tables include:

  • raw_2: a raw score level in Scale 2 (CES-D; 20 items, 1-4 points each, raw score range = 20-80).
  • tscore: the corresponding T-score in the anchor group metric.
  • tscore_se: the standard error associated with the T-score.
  • eap: the corresponding \(\theta\) in the anchor group metric.
  • eap_se: the standard error associated with the \(\theta\) value.
  • escore_1: the expected Scale 1 (PROMIS Depression) raw score derived from \(\theta\).
  • escore_2: the expected Scale 2 (CES-D) raw score derived from \(\theta\).
  • escore_combined: the expected Combined Scale raw score derived from \(\theta\).

For example, row 6 in the above table shows:

  • A raw score 25 points in CES-D corresponds to a T-score of 46.2 in the anchor group.
  • A raw score 25 points in CES-D corresponds to \(\theta = -0.382\) in the anchor group, assuming the anchor group metric is \(\theta \sim N(0, 1)\).
  • A raw score 25 points in CES-D corresponds to an expected raw score of 35.853 in the PROMIS Depression scale (raw score range = 28-140).
  • A raw score 25 points in CES-D corresponds to an expected raw score of 60.630 in the combined scale (raw score range = 48-220).

Scale linking: score-based

This section describes the workflow for performing a score-based scale linking. This is done by runEquateObserved(), which performs equipercentile linking using observed raw sum-scores. The function removes cases with missing responses to be able to generate correct sum-scores in concordance tables.

This function requires four arguments:

  • scale_from: the scale ID of the scale to be linked.
  • scale_to: the scale ID of the anchor scale.
  • eq_type: the type of equating to be performed, equipercentile for this example. See ?equate::equate for details.
  • smooth: the type of presmoothing to perform

Equipercentile linking: raw to raw

By default, runEquateObserved() performs raw-raw equipercentile linking. In this example, each raw sum-score in the scale-to-be-linked (Scale 2; CES-D, raw score range 20-80) is linked to a corresponding raw sum-score in the anchor scale (Scale 1; PROMIS Depression, raw score range 28-140) with loglinear presmoothing.

rsss_equate_raw <- runEquateObserved(
  d,
  scale_from = 2, # CES-D (scale to be linked)
  scale_to = 1,   # PROMIS Depression (anchor scale)
  eq_type = "equipercentile", smooth = "loglinear"
)

The crosswalk table can be obtained from the concordance slot:

head(rsss_equate_raw$concordance)
##   raw_2    raw_1  raw_1_se raw_1_se_boot
## 1    20 28.26881 0.1620936     0.1369462
## 2    21 29.88299 0.3370778     0.2968928
## 3    22 31.53492 0.5039397     0.4427263
## 4    23 33.26052 0.6025077     0.5973953
## 5    24 35.04116 0.7605541     0.7210170
## 6    25 36.88206 0.9289581     0.8395647

From row 6 in the above output, we see that:

  • A raw score 25 points in CES-D corresponds to an expected raw score of 36.882 in the PROMIS Depression scale (raw score range = 28-140).

Equipercentile method: raw to T-score

Alternatively, raw sum-scores can be linked to T-scores by specifying type_to = "tscore" in runEquateObserved(). In the following example, the raw sum-scores from the scale-to-be-linked (Scale 2; CES-D, raw score range 20-80) are linked to T-score equivalents in the anchor scale (Scale 1; PROMIS Depression, mean = 50 and SD = 10).

This requires a separate RSSS table to be supplied for the purpose of converting anchor scale raw scores to T-scores.

rsss_equate_tscore <- runEquateObserved(
  d,
  scale_from = 2, # CES-D (scale to be linked)
  scale_to = 1,   # PROMIS Depression (anchor scale)
  type_to = "tscore",
  rsss = rsss_fixedpar, # used to convert PROMIS Depression (anchor scale) raw to T
  eq_type = "equipercentile", smooth = "loglinear"
)

Again, the crosswalk table can be retrieved from the concordance slot:

head(rsss_equate_tscore$concordance)
##   raw_2 tscore_1 tscore_1_se tscore_1_se_boot
## 1    20 33.60138   0.1015887        0.3726552
## 2    21 38.46567   0.2970127        1.0936836
## 3    22 41.72102   0.5244657        0.6012764
## 4    23 43.93269   0.7283759        0.6383347
## 5    24 45.56073   0.9008862        0.5862935
## 6    25 46.96056   1.0676547        0.5713136

From row 6 in the above output, we see that:

  • A raw score 25 points in CES-D corresponds to a T-score of 46.961 in the PROMIS Depression scale.

Comparison between linking methods

The plot below shows the scale link produced by the equipercentile method (red dotted line) and the link produced by the fixed-parameter calibration method (blue solid line).

plot(
  rsss_fixedpar$`2`$raw_2,
  rsss_fixedpar$`2`$tscore,
  xlab = "CES-D (Scale to be linked), raw score",
  ylab = "PROMIS Depression (Anchor scale), T-score",
  type = "l", col = "blue")
lines(
  rsss_equate_tscore$concordance$raw_2,
  rsss_equate_tscore$concordance$tscore_1,
  lty = 2, col = "red")
grid()
legend(
  "topleft",
  c("Fixed-Parameter Calibration", "Equipercentile Linking"),
  lty = 1:2, col = c("blue", "red"), bg = "white"
)

To better understand the performance of the two methods, we add a best-case method where pattern-scoring is used on the response data to obtain \(\theta\) estimates.

Raw scores from Scale 2

To begin with, we create an object scores using getScaleSum() to contain raw summed scores on Scale 2 (i.e., CES-D). NA will result for any respondents with one or more missing responses on Scale 2. We could also create a summed score variable for Scale 1 using the same function, e.g., getScaleSum(d, 1).

scores <- getScaleSum(d, 2)
head(scores)
##   prosettaid raw_2
## 1     100048    21
## 2     100049    21
## 3     100050    24
## 4     100051    26
## 5     100052    20
## 6     100053    21

PROMIS T-scores based on item response patterns

To establish an ideal case scenario, we obtain \(\theta\) estimates on the anchor scale (Scale 1; PROMIS Depression) based on item response patterns using the getTheta() function.

The getTheta() function requires three arguments:

  • The data argument requires a data object from loadData(). In this example, we use the object we created earlier.
  • The ipar argument requires item parameter estimates for all items. Here, we use the item parameter estimates that were previously obtained from fixed-parameter calibration, out_link_fixedpar$ipar_linked.
  • The scale argument requires a scale ID to perform \(\theta\) estimation on. Here, we use Scale 1 (the anchor scale; PROMIS Depression).

The function returns participant-wise EAP \(\theta\) estimates and their associated standard errors:

theta_promis <- getTheta(data = d, ipar = link_fixedpar$ipar_linked, scale = 1)$theta
head(theta_promis)
##   prosettaid   theta_eap  theta_se
## 1     100048 -0.42410653 0.1606312
## 2     100049 -1.15269342 0.3229802
## 3     100050  0.05281656 0.1176509
## 4     100051 -0.04622278 0.1238298
## 5     100052 -1.65063866 0.5049212
## 6     100053 -0.55824065 0.1812502

The \(\theta\) estimates for PROMIS Depression are then converted to T-scores.

t_promis_pattern <- data.frame(
  prosettaid = theta_promis$prosettaid,
  t_promis_pattern = round(theta_promis$theta_eap * 10 + 50, 1)
)
head(t_promis_pattern)
##   prosettaid t_promis_pattern
## 1     100048             45.8
## 2     100049             38.5
## 3     100050             50.5
## 4     100051             49.5
## 5     100052             33.5
## 6     100053             44.4

These T-scores will be used as best-case scenario values in a later stage for comparing different RSSS tables from different methods.

We then merge the PROMIS Depression T-scores with CES-D raw scores.

scores <- merge(scores, t_promis_pattern, by = "prosettaid")
head(scores)
##   prosettaid raw_2 t_promis_pattern
## 1     100048    21             45.8
## 2     100049    21             38.5
## 3     100050    24             50.5
## 4     100051    26             49.5
## 5     100052    20             33.5
## 6     100053    21             44.4

From the above output, we see that participant 100048 (row 1) had scored a raw-score of 21 on CES-D, and their PROMIS Depression T-score was 45.8. See how participants with the same raw score of 21 have different T-scores in the above output, from the usage of pattern scoring.

PROMIS T-scores based on RSSS table from fixed-parameter calibration

Second, we use the raw-score-to-scale-score (RSSS) crosswalk table obtained above to map raw scores in the scale to be linked (Scale 2; CES-D) onto T-scores on the anchor scale (Scale 1; PROMIS Depression).

rsss_fixedpar <- data.frame(
  raw_2 = rsss_fixedpar[["2"]]$raw_2,
  t_promis_rsss_fixedpar = round(rsss_fixedpar[["2"]]$tscore, 1)
)
scores <- merge(scores, rsss_fixedpar, by = "raw_2")
head(scores)
##   raw_2 prosettaid t_promis_pattern t_promis_rsss_fixedpar
## 1    20     100086             40.7                   34.5
## 2    20     103937             33.5                   34.5
## 3    20     100622             38.5                   34.5
## 4    20     103946             33.5                   34.5
## 5    20     101432             38.6                   34.5
## 6    20     103645             33.5                   34.5

From the above output, we see that CES-D raw scores of 20 were mapped to T-scores of 34.5 using the RSSS table.

PROMIS T-scores based on RSSS table from equipercentile linking

Next, we use the concordance table from equipercentile linking to map each raw summed score on Scale 2 onto a T-score on the PROMIS Depression metric, t_cesd_eqp.

rsss_eqp <- data.frame(
  raw_2 = rsss_equate_tscore$concordance$raw_2,
  t_promis_rsss_eqp = round(rsss_equate_tscore$concordance$tscore_1, 1)
)
scores <- merge(scores, rsss_eqp, by = "raw_2")
head(scores)
##   raw_2 prosettaid t_promis_pattern t_promis_rsss_fixedpar t_promis_rsss_eqp
## 1    20     100086             40.7                   34.5              33.6
## 2    20     103937             33.5                   34.5              33.6
## 3    20     100622             38.5                   34.5              33.6
## 4    20     103946             33.5                   34.5              33.6
## 5    20     101432             38.6                   34.5              33.6
## 6    20     103645             33.5                   34.5              33.6

From the above output, we see that CES-D raw scores of 20 were mapped to T-scores of 33.6 using the RSSS table.

Comparison of RSSS tables

Finally, use compareScores() to compare which RSSS table gives closer results to pattern-scoring.

c_fixedpar <- compareScores(
  scores$t_promis_pattern, scores$t_promis_rsss_fixedpar)
c_eqp <- compareScores(
  scores$t_promis_pattern, scores$t_promis_rsss_eqp)

stats           <- rbind(c_fixedpar, c_eqp)
rownames(stats) <- c("Fixed-parameter calibration", "Equipercentile")
stats
##                                  corr        mean       sd     rmsd      mad
## Fixed-parameter calibration 0.8212425  0.09425445 5.772118 5.772887 4.442818
## Equipercentile              0.8153648 -0.01121751 5.849425 5.849436 4.450889